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1 About the project 

Research Institution:  
HelmholtzZentrum Muenchen 

 

Project description: The accuracy of prediction of in vivo toxicity endpoints of 

chemicals is expected to dramatically increase by an incorporation of information 

about mechanisms of action of molecules. Indeed, it is generally recognized that the 

toxicity of chemicals is the result of their influence on several toxicity mechanisms, 

which include for example the Wnt, Delta-Notch, Ras, TGF-b, and Hedgehog 

pathways. Therefore, the accurate use of the information about mechanism of action 

of molecules on these pathways (using, e.g. in vitro measurements or predicted with 

corresponding in silico models), and grouping of molecules according to their mode 

of action can increase the accuracy of in vivo toxicity predictions as well as provide a 

mechanistic explanation of the toxicity of chemicals. The information about the 

bioavailability of molecules can be also important to have better interpretation of the 

in vitro and in vivo correlations. This PhD will focus on the use of mechanism of 

action of molecules and will be complemented by work on bioavailability of 

molecules. The in vitro data from ToxCast™ project will be used. On the latest phase, 

the project will develop WWW tools for prediction of in vivo toxicity using the in 

vitro measurements and structural information of molecules. 

 



 

 

 

 

2 Introduction 

The European legislation on chemicals REACH(“REACH - Registration, Evaluation, 

Authorisation and Restriction of Chemicals,” n.d.) (Registration, Evaluation, 

Authorization and restriction of chemical) came into effect from 2007. The legislation 

assesses the risk of chemicals and aims to establish safe practices decreasing the 

impact of chemicals on human health, animal welfare, and the environment.  

The legislation aims to collect all available information on a chemical substance to 

assist in identifying potential sources of hazard and further convey recommendations 

on risk management measures through supply chains. Responsibility for the 

management of substances’ risk is transmitted from the regulators to the 

manufacturers, importers, as well as the traders and users. This raises a huge need to 

provide accurate information on risk assessment to manufacturers and regulators 

alike. 

In the course of the identification of big information gaps, the European Chemical 

Agency (ECHA) was established. ECHA aims to manage the databases, which are 

required to facilitate the information system. Additionally, it also coordinates the 

evaluation of suspicious chemicals and is building and managing a database for the 

collected hazard information, which will be kept public for consumers and 

professionals. The benefits form REACH would phase-in gradually as more 

substances get registered. REACH supports the use of animal testing only as a last 

resort, but encourages the justified use of well-established QSAR models, built with 

respect to the OECD principles, as a valid alternative. 

With the evolution in the ‘omic’ approaches, the in vitro profiling of chemicals has 

been in focus over the previous years, as it appears to be offering a potential 

alternative to long-term in vivo animal testing. 

WORK PACKAGE 1. The oral bioavailability of compounds is a function of 

absorption in gastrointestinal tract at different pH. The ChemAxon descriptors allow 

characterizing chemical structures at different pH and could be useful to predict oral 

bioavailability of chemicals. Therefore, these descriptors were implemented as part of 

the QSAR modeling platform (On-line CHEmical Modeling environment 

http://ochem.eu). 

2.1.1.1 Results: 

Chemaxon descriptors (also known as: Calculators) were implemented in OCHEM 

platform and can be calculated for any set of molecules. Descriptors implemented are 

those that return numerical or Boolean results. Unimplemented descriptors are those 

which return results not suitable for modeling purposes such as molecules or formula. 



 

 

 

 

Also calculators that require specific input parameters are not implemented. Examples 

of these calculators are those that check whether certain atom is asymmetric, whether 

2 atom are connected, or calculate the angle between 3 specified atoms.  

The implemented descriptors are divided into 7 groups: Elemental Analysis, Charge, 

Geometry, Partitioning, Protonation, Isomers, and Others  

A list of all implemented descriptors is available in Appendix A. 

pH descriptors  

Calculation of some descriptors requires consideration of pH value. User is allowed 3 
options for pH:  

• All: This calculates the value of the descriptor over the pH range from 0 to 14 
taking 1 pH unit increments at a time. Additionally, the descriptor value at 
physiologic pH 7.4 is calculated.  

• Specific value: calculates the value of the descriptor at the specified pH.  
• Specific range: calculates the value of the descriptor over the pH range 

specified between "from" until "to" taking pH unit increments equal to the 
value specified in "step". Additionally, the descriptor value at pH 7.4 is 
calculated.  

Descriptors, which consider pH value during their calculation, are: 
veragemolecularpolarizability, formalcharge, molecularpolarizability, 
molecularsurfacearea, polarsurfacearea, vdwsa, logd, acceptorcount, 
acceptorsitecount, donorcount, donorsitecount, hmopienergy, pienergy  
An agreement was signed with Chemaxon SRL to allow the academic/non-
commercial use of the implemented descriptor packages for scientists worldwide 
through the OCHEM platform. The descriptors can thus be used in model building via 
the URL www.ochem.eu 

 
Figure 1 Chemaxon in-silico descriptor package available to the scientific community 
as part of the OCHEM modeling framework  
 

WORK PACKAGE 2: QSAR models for prediction of solubility and oral 

bioavailability of chemical compounds will be developed using data available at the 

OCHEM platform. 



 

 

 

 

2.1.1.2 Results: 

 

2.2 Human intestinal absorption model 
 

Data for human intestinal absorption were based on in vivo permeability 

values measured in human subjects. Data from Zhao et al., 2002 were collected.  

Chemaxon descriptors, ALOGPS and ESATE descriptors were calculated 

using OCHEM platform. The calculated descriptors were then used to build models  

using 7 different machine learning algorithms using the software Orange namely 

linear regression, PLS regression, kNN, SVM regression, random forest, regression 

tree, and Earth learner . 5-fold cross validation approach was applied. Figure shows 

the Orange workflow used to build the models. 

 

Figure 2 Workflow from orange software representing the model building process using 5-fold cross-

validation approach 

The 3 best performing methods according to RMSE and cv-R2 were: Random 

Forest, PLS and kNN, the statistics of which are provided in table  

 RMSE MAE R2 

PLS Regression 23.13 17.92 0.42 

kNN 26.12 18.56 0.26 



 

 

 

 

Random Forest 21.56 16.04 0.50 

 

OCHEM was also used to build models on the same data as well using different 

Algorithms and descriptor packages.  

Models were developed using Multiple linear regression (MLRA), artificial neural 

networks (ANN), support vector machines (SVM), K-nearest neighbor (KNN), Fast 

Stagewise Multiple Linear Regression (FSMLR), and Partial Least Square (PLS). The 

chemaxon descriptors, which were integrated in WP1, were used together with other 

descriptor packages like AlogPS, and CDK, Dragon, OESTATE, Shape signatures, 

“ADRIANA.Code”, and inductive descriptors. 

The models showed varied quality for the correlation between chemical structure and 

permeability/absorption. Below is the statistical analysis for the models that shows 

high quality.  

Using OCHEM it is also possible to estimate the models applicability domain. The 

model showed a cross-validated R2= 0.75 ± 0.08, Q2 of 0.73 ± 0.09 (RMSE=14 ± 1.7 

and MAE=11 ± 1.4)  

A new approach was used for selecting best performing model based on consensus 

modeling. This lead to better predictivity and larger applicability domain estimation 

 

 

Figure 3 Regrsion line for the human intestinal absorption model showing the experimental (x-axis) vs. 

Predicted values (y-axis) with R2 of 0.73 

 



 

 

 

 

 

Figure 4 Williams plot representing the applicability domain oft he HIA model. The distance to model is 

represented on the x-axis while error is represented on the y-axis 

 

Models were developed based on literature data published in the following articles: 

Articles  Compound

s 

MDCK (Madin-Darby canine kidney) cells: A tool for membrane 
permeability screening (Irvine et al., 1999). 

 

55  

Molecular hashkeys: a novel method for molecular characterization 

and its application for predicting important pharmaceutical 

properties of molecules (Ghuloum, Sage, & Jain, 1999). 

20 

In silico ADME modeling 3: Computational models to predict 

human intestinal absorption using sphere exclusion and kNN QSAR 

methods(Gunturi & Narayanan, 2007). 

174 

CODES/neural network model: A useful tool for in silico prediction 

of oral absorption and blood-brain barrier permeability of 

structurally diverse drugs (Dorronsoro et al., 2004). 

28 

Physicochemical high throughput screening: parallel artificial 

membrane permeation assay in the description of passive absorption 

processes (Kansy, Senner, & Gubernator, 1998). 

25 

ADME evaluation. 2. A computer model for the prediction of 

intestinal absorption in humans (Klopman, Stefan, & Saiakhov, 

2002). 

49 

Toward minimalistic modeling of oral drug absorption (Oprea & 

Gottfries, 1999). 

85 

Experimental and computational screening models for the prediction 20 



 

 

 

 

of intestinal drug absorption (Bergström, Norinder, Luthman, & 

Artursson, 2002). 

Functional role of P-glycoprotein in limiting intestinal absorption of 

drugs: contribution of passive permeability to P-glycoprotein 

mediated efflux transport (Varma, Sateesh, & Panchagnula, 2005). 

88 

Prediction of human intestinal absorption of drug compounds from 

molecular structure (Wessel, Jurs, Tolan, & Muskal, 1998). 

86 

Rate-limited steps of human oral absorption and QSAR studies 

(Zhao et al., 2002). 

237 

Drug liposome partitioning as a tool for the prediction of human 

passive intestinal absorption (Balon, Riebesehl, & Müller, 1999). 

21 

 

 

2.3 QSAR model for plasma protein binding  
Many models were built to predict the percentage of drug that is free in plasma 
using 2D descriptors. Models were trained with experimental data gathered 
from the literature for 112 well-characterized drugs. 3D models of this 
endpoint did not offer significantly better performance. The model was tested 
with literature data from a set of 66 drugs that were not applied to the training 
process in any way.  

 

The 2 best performing models were: 

1- A support vector machine model built using Chemaxon descriptors with 

R2= Q2 = 0.94, RMSE=0.22 and MAE=0.13 (Figure 5) 

2- Associative neural network model built using AlogPS and OESTATE 

descriptors yielded the following statistics R2= 0.83, Q2 of 0.82 

(RMSE=13.32 and MAE=10.74) (Figure 6) 

Both models were built using the same dataset with 5-fold cross validation 

 



 

 

 

 

 

Figure 5 measured vs predicted (by svm model) Plasma protein binding in logit units 

 

Figure 6 Statistics for the plasma protein binding model built using ALOGPS and 
OESTATE descriptors and ASNN. 

 

 

Figure 7 applicability domain for the AHR activators classification model. Plot shows 
% of compounds (x-axis) against balanced accuracy (y-axis) 



 

 

 

 

 

2.4 QSAR model for hepatic clearance  
A model for human excretion has R2= 0.51, Q2 of 0.50 (RMSE=14.73 and 

MAE=10.73) 

 

 
Figure 8 Applicability domain for the hepatic clearance model. 

 

 



 

 

 

 

Work packages 3: Integration of data available from TOXCAST project to be 

used within the project. The data will be uploaded from PubChem/ACToR database. 

Results:  

ACToR is EPA's online warehouse of all publicly available chemical toxicity data and 

can be used to find all publicly available data about potential chemical risks to human 

health and the environment. ACToR aggregates data from over 500 public sources on 

over 500,000 environmental chemicals searchable by chemical name, other identifiers 

and by chemical structure.  

The data warehouse: 

• Allows users to search and query data from other EPA chemical toxicity 
databases including:  

o ToxRefDB (30 years and $2 billion worth of animal toxicity studies). 
o ToxCastDB (data from screening 1,000 chemicals in over 500 high-

throughput assays).  
o DSSTox (provides high quality chemical structures and annotations).  

A framework was built using Knime (Figure 9) for introducing the data into our 

modeling environment’s (OCHEM) database. This framework was then used to 

transfer all data from the databases to OCHM. The use of such workflow allows 

continuous update of the OCHEM database with new data released from EPA as long 

as the 3 databases maintain their structure. The data from ACToR system have been 

uploaded in a test version of our database and has been analyzed with respect to their 

mapping to Properties and Conditions existing in our database and their incorporation 

in our main database.  

Naturally, some of the data published through the ACTOR system of databases about 

the chemicals are not related to toxicity and are thus irrelevant to the current work. 

Such data was filtered out and will not be included in the final release. Such workflow 

is useful for the future upload (e.g: ToxCast Phase II data; expected for release in late 

2013). It also permits the flexibility of filtering data to be passed through to the 

modeling framework OCHEM.  This framework will be the base for testing the effect 

of bioavailability and biochemical pathways on quality of in vitro to in vivo 

correlations. 



 

 

 

 

 

Figure 9 graphical representation of the Knime workflow used for semi-automatic 
data upload from ToxCast database into the OCHEM platform. 

The Knime workflow has been validated for data upload. Data from Toxcast and 

ToxrefDb databases were uploaded to a new instance of OCHEM modeling platform 

(http://iprior.eadmet.com). All records were successfully introduced as expected 

(207270 records for Toxcast and 111440 records of ToxrefDb). The process lasted 

around 36 hours. Uploaded data is available for scientists through our system as part 

of Work Package 7. Knime was also used to upload the chemical structures of 309 

chemicals of the Phase I Toscast project. 

Milestone 1: QSAR models were developed for classification of chemicals. 

Analysis and categorization of molecules from ToxCast project according to their 

solubility and permeability. 

 

WORK PACKAGES 4, 5 and 6: The U.S. Environmental Protection 
Agency has established a number of programs for in vitro bioactivity profiling, 
including ToxCast,(Dix et al., 2007; Judson et al., 2010) Tox21,(Betts, 2013; 
Raymond Tice  Robert Kavlock, Ph.D., and Christopher Austin, M.D., Tice, Kavlock, 
& Austin, n.d.) and EDSP21. ToxCast is the largest in terms of number of in vitro 
assays. It covers more than 450 assays. In its Phase I, the program covered 309 
chemicals (mostly food pesticides for which thorough animal toxicity studies are 
available). 
 
Multiple previous studies evaluated the ability of the in vitro assays for predicting 
selected in vivo endpoints (Kleinstreuer et al., 2011; M T Martin et al., 2011; Shah et 
al., 2011)  and analyzed the biochemical pathways that could be involved with the 



 

 

 

 

observed toxicity. Most studies focused on a single in vivo toxicity endpoint. A 
comprehensive analysis of the in vitro-to-in vivo predictive capability of the ToxCast 
high-throughput screening effort has also been independently presented.(Thomas et 
al., 2012) 
 
In this study we assess the predictive ability of the HTS in vitro assays in constructing 
a toxicity signature. We aimed to provide an exhaustive overview of the provided data 
and its effectiveness and limitations within QSAR studies. We also investigate 
different in silico descriptor packages regarding their ability to represent the in vitro 
assays. We also investigate to what extent can in silico descriptors represent the 
information in the in vitro assays by building in silico QSAR models for the 
prediction of in vitro assays output. 
 
We finally identified 6 in vivo endpoints, which appear to be predictive with balanced 
accuracy of more than 0.65 (at 95% confidence interval). Furthermore, we found a 
number of five assays for which a high balanced accuracy (0.75) was achievable by in 
silico descriptors, which enables an improved approach towards in silico modeling 
towards toxicity in general. 

 
Figure 10. The aim of using in vitro profiling of chemicals in combination with 

knowledge about pathways of toxicity, bioavailability of compounds, as well as 

machine learning algorithms to reduce long term animal toxicity studies. 
 

2.4.1 Datasets and data handling 

In vitro assays 
 
Toxminer v17 was downloaded from ToxCast EPA website as SQL dump script, 
together with its enhanced entity relationship (EER) diagram. The data were rebuilt 
into a local MySQL database before being imported into iPRIOR(“iPrior - 



 

 

 

 

Prioritization and estimation of toxicity of chemcial compounds,” n.d.), using Knime 
(see software section for details). 
 
The database included information on biochemical pathways, processes, assay-gene, 
and gene-pathway mappings. Correlations between genes and pathways were 
collected from Gene Ontology (GO),(“Gene Ontology Documentation,” n.d.) Kyoto 
Encyclopedia of Genes and Genomes (KEGG),(“KEGG: Kyoto Encyclopedia of 
Genes and Genomes,” n.d.) Ingenuity Pathways analysis (IPA, Ingenuity systems Inc, 
Redwood city, CA),(“Ingenuity IPA - Integrate and understand complex  ’omics data,” 
n.d.) pathway commons,(“Pathway Commons,” n.d.) and the OMIM(Boyadjiev & 
Jabs, 2000) phenotype databases.  
 
The extracted data included the chemical structure files (sdf) for all 309 compounds in 
the database. The in vitro information consisted of 467 assays, some of which 
evaluates multiple time points, resulting in 669 assay endpoints. It is worth 
mentioning that the response of the ToxCast phase I chemicals (309 compounds) 
varies significantly across different in vitro assay categories. Figure 1 shows the 
response of the ToxCast phase I chemicals to the 669 endpoints measured. The assays 
cover nine technologies: cell-free HTS assays; multiplexed transcription reporter; 
biologically multiplexed activity profiling; high-content cell imaging; multiplexed 
gene expression; cell-based HTS; phase I and II XME cytotoxicity; real-time cell 
electronic sensing; and HTS genotoxicity. The assays measure both direct interactions 
between chemicals and identified receptors and enzymes, as well as downstream 
events on receptor gene activity or cellular consequence.  
 

 
Figure 11. Heat map of 669 assay endpoint measurements (including multiple 

time points where available) in the ToxCast phase I data set. The assays are 

arranged from the left to the right, and chemicals are arranged top to bottom. 

The data values were discretized for the analysis, thus higher or lower values of 

AC50/LEC are not differentiable. 



 

 

 

 

EPA database reported a half maximum activity concentration (AC50) or lowest 
effective concentration (LEC) for assay responses. However, due to the comparably 
low accuracy associated with HTS settings, under which these experiments were 
conducted, we focused to calculate classification models. If such models deliver 
reasonable results, more detailed regression models could be interesting for a further 
exploration of the underlying endpoints. Therefore, all assay results were discretized 
into (response/no response) values.  
 
At a rough estimate, only 7% of the assay/chemical interaction matrix showed any 
response. Another approach we considered, in terms of data consolidation, is to 
analyze the liability of a chemical to cause a perturbation in a given pathway, 
regardless of which gene it affects to cause such perturbation. 
 
 
In vivo animal studies 
 
The ToxMiner v17 included subset of the toxicity reference database (ToxRefDB) that 
is relevant for the chemicals of the ToxCast study. The database had results for 461 
animal studies conducted. Again, all results were discretized to whether a chemical 
exerts the toxicity of question or not. The score of a chemical or toxicity was 
considered irrelevant for the subsequent analysis. 
 

2.4.2 Methods 

In Silico Descriptors 
 
iPrior web platform(“iPrior - Prioritization and estimation of toxicity of chemcial 
compounds,” n.d.) was used to calculate in silico descriptors from eight different 
commercial and academic providers. These considered packages are GSFrag(Aires-
de-Sousa & Gasteiger, 2001), ISIDA fragments(Varnek et al., 2008), Chemaxon 
descriptors(“Calculator Plugins « ChemAxon – cheminformatics platforms and 
desktop applications,” n.d.), Estate indices(Hall, Kier, & Brown, 1995) & AlogPS(I V 
Tetko, Tanchuk, Kasheva, & Villa, 2001; Igor V Tetko, Tanchuk, & Villa, 2001), 
CDK(Steinbeck et al., 2003), inductive descriptors(Cherkasov et al., 2008), Dragon 
6(Todeschini & Consonni, 2009), Adriana.Code(“ADRIANA.Code - Calculation of 
Molecular Descriptors | Inspiring Chemical Discovery,” n.d.). The descriptor values 
are available in the supplementary materials. 
 
To calculate chemical-pathway perturbations, 1456 pathways were correlated to 299 
chemical structures. We considered the correlation of pathways to their respective 
genes then investigated whether a compound had a positive hit to any assay associated 
with these genes. If a chemical shows activity in any assay associated with these 
genes then it was considered perturbing the investigated pathway. Subsequently we 
built of a chemical/pathway-perturbation matrix that showed that 14% of potential 
interactions were positive. 
 



 

 

 

 

The iPrior online platform(“iPrior - Prioritization and estimation of toxicity of 
chemcial compounds,” n.d.), containing an implementation of the Chemaxon 
Standardizer, was used for the preprocessing of chemical compounds. The 
standardization process included a salt counter-ion removal, charge neutralization, and 
recalculation of 3D structures, using CORINA(Sadowski, Gasteiger, & Klebe, 1994), 
and the standardization of nitro groups and aromatic ring representations. The iPrior 
implementation additionally was used to calculate descriptor values for the packages 
listed above. 
 
In total 9691 descriptors were derived for 299 compounds. The calculation for ten 
structures failed, as these compounds were inorganics, organometalics, mixtures or 
large macrocyclic compounds. A list of the disregarded molecules is available in the 
supplementary materials. Furthermore, descriptors with a variance < 0.01 were 
removed, which resulted in a total number of 6318 relevant descriptors. 
 
Modeling in vivo animal toxicity 
 
Models were built using 9 different machine learning algorithms provided by 
Knime(“KNIME | KNIME Desktop,” n.d.). The used approaches consisted of: 
Probabilistic Neural Network (PNN); Support vector machines (LIBSVM v2.89); 
multilayer feedforward networks (RPROP); a decision tree learner; the k-nearest 
neighbor approach; Random forests; and three algorithms based on WEKA(Holmes, 
Donkin, & Witten, 1994) v3.6: J48 (Java implementation of C4.5 decision tree); 
LADTree; and REPTree. All models were built based on a 5-fold cross- validation. 
Supplementary materials include the parameters for all used algorithms. 
 
 



 

 

 

 

 

Figure 12 Knime workflow used to build QSAR models for in vitro to in vivo correlation using Phase I 

ToxCast data 

 
As descriptors with low variance are likely to degrade the performance of certain 
learning algorithms (in particular those which are distance based), all in vitro assays 
that have low hit ratio, 3 or less compounds (i.e. <1%), were removed from the list of 
relevant biological descriptors prior to modeling (as done with the in silico 
descriptors). The list of all in vitro assays with the number of their hit compounds is 
listed in the supplementary materials. 
 
Descriptors used for the calculation of the models were: in silico descriptors from the 
eight descriptor packages separately; discretized in vitro assays separately; discretized 
pathway correlations separately; and a combination of all descriptors. 
 
Out of the 461 available animal studies, only 61 showed toxicity for 35 or more 
chemicals, which was used as a tentative threshold for conducting proper 5-fold cross 
validation. For every endpoint the total number of tested compounds was between 
234-251. Animal toxicity studies were conducted in rats, rabbits, and mice. For each 
study only one animal species was used. The in vivo toxicology assays are those 
derived from ToxRefDB. The majority of data currently in the ToxRefDB database, a 
component of the larger ACToR system, contains summary results of primary 
toxicology studies submitted to the EPA on pesticide active ingredients(M T Martin, 
Houck, McLaurin, Richard, & Dix, 2007). Typically these data have been extracted 



 

 

 

 

from EPA Office of Pesticide Programs (OPP) evaluations of studies, based on EPA 
Office of Prevention, Pesticides and Toxic Substances (OPPTS) harmonized test 
guidelines. Full details of the collected data has been described in literature(Matthew 
T Martin, Judson, Reif, Kavlock, & Dix, 2009). 
The Toxicity Reference Database (ToxRefDB) has been the primary tool for storing 
and accessing high-quality toxicology studies and is available online for search and 
download(US EPA, n.d.). ToxRefDB has characterized thousands of studies using a 
standardized vocabulary, a uniform structure across study types, and a high level of 
internal and external quality control (QC) for the extraction of endpoints useful in 
developing predictive models(Matthew T Martin et al., 2009). Full list of in vivo 
toxicology assays are available in the supplementary materials. 
 
In total 6039 models were built on 61 endpoints with nine machine learning 
approaches applied to eleven feature combinations. The selected in vivo animal 
toxicities for modeling together with their respective number of toxic compounds are 
listed in the supplementary materials. 
 
Modeling in vitro assays 
 
An interesting exploration was to figure out to which extent could in silico descriptors 
represent the information represented in the in vitro assays. To investigate this, we 
evaluated approaches to model the in vitro assays using different in silico packages. 
 
Most of the in vitro assays show activity for only few compounds or even none at all. 
Therefore they cannot be modeled with the available data. From the available 669 in 

vitro assay endpoints, only 148 contained 35 or more active hits with the tested 
compounds. For these endpoints, all 299 concerned compounds were used to build 
QSAR models. List of all in vitro assays with their description is available in the 
supplementary materials. 
 
The same learning algorithms were used as with the in vivo animal experiment 
modeling.  The in silico descriptors from the eight descriptor packages, which were 
used to model each assay, were applied separately or all combined in one descriptor 
set. In total 11988 models were built on 148 endpoints applying nine machine 
learning approaches to nine feature combinations). 
 

 

2.4.3 Discussion 

Modeling in vivo animal toxicity 
 
Fig. 2 shows the balanced accuracy of all 6039 models built. Different statistical 
parameters for all the models including: sensitivity; specificity; balanced accuracy; as 
well as Matthews correlation coefficient (MCC) are included in the supplementary 
materials. 
 



 

 

 

 

Table 1. The five best and the four worst predicted in vitro assays based on the 

median balanced accuracy of the respective models. 

 Mean 

BA 

Median 

BA 

Max. 

BA 

Min. 

BA 

CHR_Rat_CholinesteraseInhibition 0.74 0.77 0.92 0.5 

MGR_Rat_Liver 0.6 0.61 0.7 0.49 

CHR_Rat_Liver_1_AnyLesion 0.58 0.58 0.66 0.5 

DEV_rat_Developmental_Skeletal_
Axial 

0.55 0.56 0.65 0.46 

DEV_rat_Developmental_Skeletal 0.55 0.55 0.67 0.45 

    
MGR_Rat_LitterSize 0.5 0.5 0.56 0.46 

MGR_Rat_Ovary 0.5 0.5 0.56 0.46 

CHR_Rat_Tumorigen 0.5 0.5 0.56 0.42 

MGR_Rat_Testis 0.5 0.5 0.61 0.45 

 
The mean, median, maximum as well as minimum balanced accuracy of the five best 
and the four worst predicted animal toxicity studies are provided in table 1. The 
ranking was based on the median balanced accuracy of their respective models. 
 
Table 2 The All toxicity endpoints that have a significant probability for getting a 

balanced accuracy of 0.65 for their best model togther with their respective 

probabilities 
Toxicity end point Probability of the best 

model having BA > 
0.65 

CHR_Rat_CholinesteraseInhibition 1 

Multigeneration Rat Endpoint for Liver microscopic and 
gross pathologies and weight changes 

0.9997 

Multigeneration Rat Endpoint for Kidney microscopic 
and gross pathologies and weight change 

0.9990 

Developmental rat Developmental Skeletal 0.9876 

Developmental rabbit Developmental Skeletal 0.9827 

CHR_Rat_Liver_1_AnyLesion 0.9806 

 
 
To better understand the reason behind the success in modeling of cholinesterase 
inhibition in rats, the “Set Compare” tool from iPrior was used. The 2 sets of 
compounds (toxic vs. non-toxic) were compared using ISIDA fragmental descriptors. 
All toxic compounds had common phosphorus-containing scaffolds. Indeed, 
Cholinesterase inhibition is the main mechanism of action by which phosphorus 
insecticides perform their function. 32 of the 45 toxic compounds for this endpoint 
were organophosphorus compounds. Only one non-toxic compound was a phosphorus 
derivative. This simple scaffold is easy to capture for any descriptor package that 
accounts for fragments or atom counts while becomes harder for in vitro assays to 



 

 

 

 

indirectly capture the presence of that scaffold. Table 3 shows the most common 
scaffolds and their respective p-value. 
 
Table 3 Most common ISIDA fragments in the toxic cholinesterase inhibitors 

showing clear indication of organphosphorus compounds 
Descriptor # in toxic set 

(45 molecules) 
# in non-toxic set 
(212 molecules) 

p-value 

SdsssP 30 1 8.94E-28 

Se1O2P4sd 28 1 2.17E-25 

Se2P4S1s 16 1 4.53E-13 

Se2O1P4s 14 0 2.13E-12 

 
 
It was possible to obtain, at least, one model for each end point that shows statistically 
significant prediction higher than random guess balanced accuracy (0.5) with 99.5% 
confidence interval. For the chronic rat cholinesterase inhibition, the predictive 
accuracy reached more than 90% for some models. The provided statistics reveal that 
only six end points has any models that exceeded a balanced accuracy of 0.65 (with 
95% balanced accuracy). Table 5 shows the performance of different descriptor 
packages regarding the median confidence interval of having a significant model. 
While ISIDA descriptors showed best values, the in vitro assays and pathway 
correlations performed worst. The use of in vitro assays, as biological descriptors, did 
not result in significantly better results than the use of in silico descriptors. Neither the 
combination of both had significant improvement to the prediction quality. The 
supplementary materials show the average performance of models built using 
different descriptor combinations. 
 

Table 4. Performance of different algorithms in constructing QSAR models for 

both in vitro assay enpoints and in vivo toxicity. For each algorithm, the median 

probability of building a model that shows statistically significant prediction 

higher than random guess balanced accuracy (0.5) is shown. All algorithms were 

challenged by the same assay endpoints and descriptors. 
Algorithm Median Probability (in 

vivo toxicity models) 
Median Probability (in 
vitro assays modeling) 

KNN-5cv 0.822 0.998 

RProp-MLP-5cv 0.797 0.986 

J48-5cv 0.781 0.990 

LADTree-5cv 0.760 0.991 

RandomForest-
5cv 

0.756 0.987 

PNN-5cv 0.756 0.941 

Decision-Tree-
5cv 

0.712 0.976 

LIBSVM-5cv 0.683 0.965 

REPTree-5cv 0.667 0.922 

 



 

 

 

 

 

Table 5. Performance of different descriptor packages in constructing QSAR 

models for both in vitro assay enpoints and in vivo toxicity. For each descriptor 

package, the median probability of building a model that shows statistically 

significant prediction higher than random guess balanced accuracy (0.5) is 

shown. Compared models were built for the same assay endpoints and using the 

same algorithms. 
Descriptrs Median Probability 

(in vivo) 
Median Probability 
(in vitro) 

ISIDA Fragments 0.841 0.989 

All-Combined 0.829 0.990 

CDK 0.816 0.990 

Estate-AlogPS 0.801 0.990 

Dragon6 0.794 0.987 

GSFrag 0.756 0.973 

Adriana-CODE 0.754 0.984 

Inductive Descriptors 0.744 0.962 

Chemaxon Descriptor 0.742 0.988 

Pathways correlations 0.624 - 

Toxcast in vitro assays 0.597 - 

 
Table 4 compares different algorithms on their performance, the observation that a 
comparably simple method, such as the kNN approach shows the best average 
performance, compared to non-linear high resolution methods, such as support vector 
machines or neural networks indicates that the information contained in the majority 
of in vivo experiments provided in the data is not informative by classical QSAR 
modeling techniques.  
When comparing different descriptor packages, some were better than others in 
capturing toxicity events. Table 5 shows that ISIDA fragments performed best, while 
the use of in vitro assays was considerably less successful. It is also possible to notice 
that the use of pathway correlations slightly improved the probability to obtain a 
predictive model (higher than random guess balanced accuracy of 0.5). 
 
Modeling in vitro assays 
 
Fig. 3 shows the balanced accuracy of all 11988 models built to predict the in vitro 
assays. As with the animal toxicity modeling, different statistical parameters are 
reported in the supplementary materials. In comparison to the prediction of in vivo 
experiments a significant improvement in accuracy is observable. For numerous 
assays, such as those listed in Table 6, we were able to build predictive models 
exceeding a balanced accuracy of 0.75. The ten best predicted in vitro assays based on 
the median balanced accuracy of their respective 81 models are listed in table 3. 
Considering the best models built for each endpoint, almost all (147 out of 148) in 

vitro assays showed an ability to build in silico models that are statistically significant 
than random guess balanced accuracy (0.5) (95% confidence level). 68 endpoints 
showed balanced accuracy of >0.6 while for four assays it was possible to get a 



 

 

 

 

balanced accuracy of 0.75 at that confidence level. These assays are related to change 
in expression of different isoforms of the liver metabolizing enzymes CYP450, 
namely (2B6 in humans, 2B1 and 2C11 in rats) as well as the cell loss count after 72 
hours. This also agrees with previous in silico studies that reported success in building 
in silico QSAR models for prediction of CYP450 expression change of different 
isoforms(Lewis, Modi, & Dickins, 2002; Novotarskyi, Sushko, Korner, Pandey, & 
Tetko, 2011; Roy & Roy, 2009). 
 
Table 6 shows the best predicted in vitro assay endpoints and their confidence 

intervals for a balanced accuracy of 0.75 
Assay name Probability of a balanced 

accuracy >0.75 

CellzDirect CYP2B6 24hr 0.993 

Novascreen Rat CYP2B1 0.986 

Cellumen Cell Number 72hr 0.960 

Novascreen Human CYP2B6  0.953 

Novascreen Rat CYP2C11  0.947 

 
 
Table 7. Performance of the ten best predicted in vitro assays, based on the 

median balanced accuracy performance of their respective 81 models. 

 Mean Median Maximu

m 

Minimu

m 

CLM_CellLoss_72hr 0.71 0.71 0.79 0.61 

CLZD_CYP3A4_48 0.69 0.70 0.77 0.52 

CLZD_CYP2B6_24 0.69 0.70 0.80 0.51 

BSK_SAg_Proliferation_down 0.69 0.69 0.76 0.57 

NVS_ADME_rCYP2B1 0.68 0.69 0.84 0.50 

BSK_3C_Proliferation_down 0.68 0.69 0.78 0.50 

NVS_ADME_rCYP2C11 0.66 0.68 0.80 0.49 

BSK_hDFCGF_Proliferation_dow
n 

0.67 0.68 0.75 0.50 

CLZD_CYP2B6_6 0.66 0.67 0.74 0.50 

NVS_ADME_hCYP3A5 0.65 0.66 0.78 0.50 

 
Regarding the descriptor collections, the observations were different from the case 
with the in vivo experiments. In this case, there was no significant difference between 
the performances of different descriptor packages as shown in Table 5. Analogously, 
Table 4 provides a comparison of different machine learning algorithms. Also in this 
case all algorithms performed comparably good.  
 
Conclusion 
 
The comprehensive analysis of Phase I compounds shows that, with the exceptions of 
few in vivo toxicity end points, it is still challenging to build predictive toxicity 



 

 

 

 

models for replacement of animal testing. The only end point with possible prediction 
power for such replacement was the acetyl cholinesterase inhibition. In a way, the 
limited chemical diversity of the dataset, consisting mainly of insecticides and 
pesticides, could have been responsible for both the success of modeling for this 
endpoint as well as the failure for modeling others. 
 
 The in vitro profiling of chemicals didn’t have a significant improvement for model 
statistics. It was however possible to get better predictive models representing the in 

vitro assays using exclusively in silico descriptors. This might be due to the fact that 
each in vitro assay is typically measuring a small number of interacting genes and 
pathways, which is insufficient, when considering the more complex requirements 
needed to model a toxicity phenotype.  
 
We also found a significant correlation, again with the exception of acetyl 
cholinesterase inhibition, between the number of toxic compounds and the median 
ability of algorithms and descriptors to build a predictive model as shown in Figure 13. 
 
Many challenges remain in place: first of all, the use of a statistical approach, such as 
QSAR modeling, requires a considerable amount of data. The comparably low 
number of training instances limits the possibility to model the data in an appropriate 
way; secondly, the in vitro representation is probably too simple to address the 
complexity of the interactions in the organism. Properties, such as bioavailability and 
biotransformation play a significant role in terms of the toxic effect of a compound; 
thirdly and finally, it is possible that the assays conducted are not enough to capture 
biochemical events on the molecular level that can describe the pathways responsible 
for toxicity. 
 
A consequence arising from this should be the careful investigation and analysis of 
potentially useful in vitro assays in terms of specific toxicity endpoints, as well as the 
identification of those in vitro assays, which enable proper QSAR modeling. 
 
With that taken into consideration, ToxCast Phase I still provided useful overview of 
the chemical initiating events that could be useful for further investigation with a 
higher number compounds. For example, many assays may be redeemed unnecessary 
in future tests, as they were focused on promiscuous dormant endpoints. This initial 
phase offered to implement the required workflows and modeling infrastructure and 
enables to experience the needs and challenges of developing predictive biological 
signatures. Such infrastructure is now available for the analysis of future data releases. 
 
As more data become available with the progress of the next phases of ToxCast and 
similar projects, it could be possible to build statistical models that support the 
prediction of toxicity and therefore reduce the number of animal experiments. Till 
then, in vitro assays for chemical profiling remains a useful investigation and 
exploratory tool. Previous study(Thomas et al., 2012) showed similar results and 
suggested that in vitro profiling could be useful for the prioritization of compounds, 
rather than the replacement of animal testing. 
 



 

 

 

 

 

Example toxicity end point: Liver toxicity 

The rat liver neoplastic lesions end point was selected from the EPA 

Toxcast™/ToxRefDB in vivo assay endpoints as an example for modeling. 

In silico descriptors 

Models were built using Estate Indices, Dragon 6, AlogPS, ISIDA, chemaxon, 

ADRIANA.Code and CDK descriptor packages. All models were internally validated 

using 5-fold cross validation. Models were compared in their ability to predict the 

presence of rat liver neoplastic lesions. 

Biologically-derived descriptors 

In vitro assay responses were discretized using OCHEM software into a binary format 

(response/no response). The resulting binary experimental values were used as 

biologically derived descriptors to predict the in vivo endpoint  (either alone or in 

combination with in silico descriptors) 

Machine-learning algorithm 

Models were built using FSMLR, SVM, KNN, and ASNN. Thus, linear and non-

linear algorithms were evaluated. In general ASNN showed the best performance. 

Consensus model 

A consensus model was built between in vitro assay and the best performing in silico 

model (using Dragon 6 descriptor package) 

Model access  

Every model has a public id (see results table) which can be used to access the model 

on the iPrior system online at http://iprior.ochem.eu once it becomes approved and 

published. 

Results: 
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ALogPS  14 166 60 7 66.7 26.5 46.6 30 

Dragon 6  14 109 118 7 66.7 52 59.3 53.2 

ISIDA  6 97 130 15 28.6 57.3 42.9 54.8 

Chemaxon  7 64 160 14 33.3 71.4 52.4 68.2 

CDK  14 125 97 7 66.7 43.7 55.2 45.7 

ADRIANA.

CODE  

13 144 79 8 61.9 35.4 48.7 37.7 

ALOGPS+

ESTATE  

4 115 111 17 19 49.1 34.1 46.6 

In vitro 

assays  

17 141 86 4 81 37.9 59.4 41.5 

In vitro + 

Dragon 6  

13 64 163 8 61.9 71.8 66.9 71 

TP: True positive; FP: False positive; TN: True negative; FN: false negative; SN: sensitivity; 

SP: specificity; BA: Balanced accuracy; Acc: Accuracy. 

Balanced accuracy was used as the measure for performance comparison between 

different models. The best performing model was a consensus built on models: 

(45096241; Dragon 6 in silico descriptors) and (id:39831812; biologically-derived  

HTS in vitro assays).  

Conclusion 

ToxCast Phase I dataset is particularly challenging for modeling. The data include 

only 309 different compounds and more than 500 in vitro assay endpoints which form 

a large number of descriptors that overwhelm machine learning algorithms. The data 

is also highly unbalanced making it difficult for parameter selection methods. 

However, Our study demonstrate that hybrid models, which incorporate both 

Toxcast™ in vitro parameters and in silico descriptors, provided higher accuracy for 

prediction of liver carcinogenicity compared to the separate use of individual 

descriptors. The in vitro parameters also expand the applicability domain of models. 

 



 

 

 

 

 

Figure 13 Chart showing the number of toxic compounds and the median balanced accuracy for all modeleld toxicity endpoints. With the exception of rat cholinestrase inhibition, 

there is a significant correlation between the performance of the model and the number of compounds. 

 

 

Figure 14. Overview of 6039 models built for the prediction of 61 animal toxicity endpoints from the toxicity reference database. The endpoints names are shown on the x-axis 

ordered alphabetically based on the format in ToxRefDB database: study type_species_organ_effect_category. The full list of endpoints and their description is provided in 

supplementary material. Study type: DV, developmental; CR, chronic; MGR, multigenerational. Species: Rt, rat; Rb, rabbit; Ms, mouse. Effect and category: Mat, maternal; GL-Mt, 

general maternal; Dev, developmental; PregRel, pregnancy related; PregLoss, pregnancy loss; AnyLes, any lesion; Skel, skeletal; PreneoplastLes, preneoplastic lesion; GenFetal, 

general fetal; Prolif- eratLes, proliferative lesion; WghtReg, weight reduction; NeoplastLes, neoplastic lesion; Reproduct, reproductive; ThyroidGlnd, thyroid gland; ReproductTract, 

reproductive tract; Perform, performance; Cholinester, cholinesterase; Inhibit, inhibition.  

 
Figure 15 Overview of 11988 models built for the prediction of 148 in vitro assay endpoints from the toxicity reference database. Full description of each assay is available in the 

supplementary materials. ACEA: ACEA - Real-time Cell Electronic Sensing; ATG: Attagene - Transcription factor assays; BSK: BioSeek - Cell-based protein level assays; CLM: 

Cellumen - Cell imaging assays; CLZD: CellzDirect - Transcription assays; NCGC: NCGC - nuclear receptor assays; NVS: Novascreen / Caliper - receptor binding and enzyme 

inhibition assays; Solidus: Solidus - P450 vs. cytotoxicity assays



 

 

 

 

As more data become available from future ToxCast data release it might be possible 

to extend the current models. However, The concept of building an in silico model for 

an in vitro assay was still interesting for investigation using a bigger more 

homogenous dataset. For this, the activation of the Aryl Hydrocarbon receptor was 

investigated below. 

2.5 AhR receptor activation model 
The Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. It 

regulates the expression of a battery of genes in a wide range of species and tissues. 

Among the most characterized chemical classes that are known to be ligands for AhR 

are environmental toxins, such as the halogenated aromatic hydrocarbons (HAHs) and 

nonhalogenated polycyclic aromatic hydrocarbons (PAHs). Endogenous ligands have 

also been reported. Exposure to TCDD (dioxin), the prototypical and most potent 

HAH, and related compounds produces a diverse array of species- and tissue- specific 

toxic and biological effects, the majority of which are AhR dependent 

In vitro assay: 

Primary cell-based high throughput screening assay to identify activators of the Aryl 

Hydrocarbon Receptor (AHR) was conducted by The Scripps Research Institute 

Molecular Screening Center (SRIMSC).  Overall, 324751 compounds were tested, of 

which 7988 compounds were active. A mathematical algorithm was used to determine 

nominally activating compounds in the primary screen. Two values were calculated: 

(1) the average percent activation of all compounds tested, and (2) three times their 

standard deviation. The sum of these two values was used as a cutoff parameter, i.e. 

any compound that exhibited greater % activation than the cutoff parameter was 

declared active. The data were made available through the pubchem bioassay database 

(AID: 2796). The in vitro testing of such a large number of compounds provides the 

potential for building a predictive model for the AHR activation.  

2.5.1 In silico model building 
Data were uploaded to the OCHEM modeling framework and multiple classification 

models were developed using different descriptor packages and a dataset of 15974 

compounds (all 7988 active compounds and equal number of randomly selected 

inactive compounds). Models were built using Estate Indices, Dragon 5&6, AlogPS, 

ISIDA, CDK, MERAnMERSY, and chemaxon descriptors. Linear and nonlinear 

algorithms were evaluated: Ann, Knn, SVM, J48, Random forests. 2D and 3D 

structure were evaluated (The software package CORINA, integrated into OCHEM, 

was used for 3D structure generation).  

Parameter selection was performed using 90% correlation cut-off. Cross-validation 

used stratified bagging validation with 64 bagging models 



 

 

 

 

The machine learning algorithms had little impact on the model quality. By evaluating 

the applicability domain of the developed model, one can reach an accuracy of > 90% 

for the top 50% of compounds. 

A quantitative model was built for modeling the % inhibition. The cross-validated Q 

squared was > 0.53 (using Dragon or fragmental descriptors) and neural networks. 

The quality of the model deteriorated with MLR and Dragon to 0.28. It was also 

affected in case of fragment descriptors but not as bad (0.42). 

To standardize the model development process, Chemaxon package was used to 

preprocess the molecules by removing salt counter ions, neutralizing ions and 

standardizing the chemical structures regarding nitro-group representation and 

aromaticity. Below is a summary of the sequence of chemical structure handling 

performed through OCHEM. 

Molecules preprocessing: 

• Aromatize structures for compatibility with certain descriptors 
• Standardize  molecular structure by given molecular templates 
• Remove counter ions prior to descriptor calculation 
• Neutralize compounds 
• Generate 3D structures (by Corina or Mopac) 
 

Descriptor selection was done by eliminating non-useful descriptors (with less than 2 

unique values), deleting descriptors that have failed in calculation by dragon (reported 

with a value of 999999),  deleting descriptors that have variance smaller than 0.01 and 

grouping descriptors, that have pair-wise correlations Pearson's correlation coefficient 

R larger than 0.95 

Internal validation was performed using stratified bagging validation with 64 bagging 

models and showed similar results. 

The online chemical modeling framework (OCHEM) was used as it is a robust system 
to handle the chemical structures, descriptors calculation and model validation. Data 
were introduced to using Knime (Workflow management tool). 

 
 

 

Figure 16. Diagram representing the workflow process for the model development, 

strarting with data download from Pubchem Bioassay followed by data upload to 

OCHEM using Knime and finally the  QSAR modeling using OCHEM 



 

 

 

 

2.5.2 Results: 

The three best performing models were built using Chemaxon descriptors implemented in 

WP1. The balanced accuracy for the three best performing models is shown in Table 8 

 

Algorithm Balanced accuracy 

Random forests 71.8% 

J48 73.1% 

ASNN 72.9% 

Table 8 Balanced accuracy for the 3 best performing models built using Chemaxon 
descriptors 

 

 

Figure 17. Graph representing a comparison between overall accuracy and accuracy 
of top 20% subset of the dataset. Each dot represents a model. Models lying in the top 
right corner are considered more predictive as they would have better overall accuracy 
as well as better accuracy for the 20% of compounds nearest to the model from a 
distance-to-model perspective. 

 



 

 

 

 

 

Figure 18 Graph representing the overall applicability domain performance of 3 
models developed using chemaxon descriptors with different machine learning 
algorithms (Associative neural networks, J48 WEKA implementation, and random 
forests) 

 

Best performed model using single descriptor package 

Experimental 

/ prediction  

Inactive 

(Training set) 

Active 

(Training set) 

Inactive  

(Test set) 

Active  

(Test set) 

Inactive 4478  1912 1119  464 

active 1520 4846 404 1207 

Table 9 Confusion matrix for the best performing model, based on balanced accuracy, 
built using the descriptor package Chemaxon implemented in WP1 and the J48 
machine-learning algorithm. 

Dataset # compounds Balanced accuracy 

Training set 12733 73.1% ± 0.8 

Test set 3193 72.8% ± 1.5 

 Table 10 balanced accuracy for the training and test sets for the best performing 
model. 



 

 

 

 

 
Figure 19 Williams plot for the AHR activation classification model representing the 
training set (red) and the test set (green) showing balanced accuracy on the y-axis and 
the distance to model for % of compounds on x-axis. It shows that the 20% nearest 
compounds to the model had a balanced accuracy >90% 

 

Figure 20 Williams plot for the applicability domain of AHR activation classification 
model representing the training set (red) and the test set (green) showing balanced 
accuracy on the y-axis and the distance to model in terms of Bagging standard 
deviation on x-axis. It shows that prediction accuracy decreases (moving left to right) 
as the distance to the model increases. 

 

Consensus model: 

We investigated the possibility to further improve the model performance using consensus 

modeling. The 3 best performing models were used to build a simple average consensus 

model. The consensus model showed better balanced accuracy than any single model as 

shown below: 



 

 

 

 

Experimental 

/ prediction  

Inactive 

(Training set) 

Active 

(Training set) 

Inactive  

(Test set) 

Active  

(Test set) 

Inactive 4816  1574 1185  398 

active 1712 4654 435 1176 

Table 11 Confusion matrix for the consensus model developed using Chemaxon descriptors and J48 

algorithm. 

Dataset # compounds Balanced accuracy 

Training set 12756 74.2% ± 0.8 

Test set 3194 73.9% ± 1.5 

Table 12 Statistics for the consensus model showing better balanced accuracy for both training and test sets 

than individual models. 

 

2.5.3 Analysing most relevant Chemaxon descriptors: 

MLR model was used to investigate the descriptors that have the highest influence on the 

model (ordered by their relevance). These descriptors were found to be the most influential: 

1. Smallest ring system size 
2. Formalcharge at acidic PH 
3. Molecular polarizability 
4. Carboaromatic ring count 
5. Formalcharge at acidic PH 
6. Aliphatic ring count of size 4 and 8 
7. Donor site count 
8. Minimal projection size and area 

 

2.5.4  Analysis of relevant fragments for AhR activation: 

In order to get a better understanding of the models for AhR activation, the setCompare utility 
on OCHEM.eu was used to compare the set of activators and non-activators to determine the 

fragments which are significantly more abundant in the set of activators but absent in the set 

of non-activators. The fragments were frond from chemical classes that ae well-known to 

activate the AhR. Below are some of these fragments with their associated p-values: 
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 P-value: 10^-15 P-value: 10^-5 P-value: 10^-6 

Table 13 fragments significantly associated with the activation of the AhR 

showed together with their respective P-values 

 

WORK PACKAGE 7: Developing of web tools for utilizing the models 

developed during the project. 

 
Bioavailability models: 
All bioavailability models built using OCHEM are accessible online via the OCHEM 

platform www.ochem.eu which is hosted for free non-commercial use by the 

HelmholtzZentrum Muenchen. Academics allover the EU and the world are able to 

access the models, apply them for prediction of their compounds or use them as an 

input for building their own models. 

Public links for the models developed are: 

- Model for human intestinal absorption: https://ochem.eu/model/4887243 

- Model for plasma protein binding: https://ochem.eu/model/29533224 

- Model for hepatic clearance (by hepatic suspension cells): 

https://ochem.eu/model/27662546 

- Model for the Aryl hydrocarbon activation:  https://ochem.eu/model/46085288 

 

Orange and Knime workflow are available at: www.amaziz.com/eco/workflows  

ToxCast analysis: A special modified version of OCHEM dedicated for the 
prioritization and estimation of toxicity of chemical compounds was deployed online 



 

 

 

 

to act as a repository for storing all data and models generated. The new modeling 
framework is called iPRIOR and can be accessed online through the URL 
(http://iprior.eadmet.com). For dissemination of information, scientists can create free 
accounts on the framework and access models and their statistics. They can apply 
these models to new chemical structures, or use them to build even more complex 
models 

 

WORK PACKAGE 8: Document the project achievements and report future 

developments and suggestions as well as the potential for commercialization. 

The research conducted in this project will be documented in a PhD thesis to be 

submitted by the researcher to the technical Universtiy in Munich (TÜM). A version 

of the thesis will also be available online. 

The iPrior platform will be further hosted by eADEMT GmbH, a spin-off from the 

host organization, which will also explore the commercialization possibilities of the 

reported research results.  

The Marie Curie Initial Training Network (ECO) offered the researcher an exceptional 
opportunity to attend multiple conferences and network with the chemoinformatics 
community. Not only scientifically, but also on the self-development level, the 
network provided the researcher with language courses that allowed him to better 
integrate into the European host country. The industrial internship at Pfizer Inc global 
research site was of particular importance as it allowed a much better understanding 
of the Pharmaceutical industry needs and how the in silico models are utilized in 
practice. Below is a list of the activities that the researcher took part between the 
periods (March 2010 – April 2013). 
 
The researcher is currently employed in eADMET GmbH and wishes to continue his 
research activities in Europe. 
 

Milestone 3: Summing the work done on the project by providing a thesis 

describing the methods and techniques developed as well as web tools exposing the 

technologies used to other scientists who can benefit from it. 

3 Conferences and Meetings attended 

3.1.1 Chem/Bioinformatics 

–  German conference in chemoinformatics (Goslar, 2010) 
–  Chemaxon European user group meeting (Budapest, 2011) 
–  OpenTox meeting (Munich, 2011) 
–  German Conference on Bioinformatics (Weihenstephan, 2011) 
–  7th German conference in chemoinformatics (Goslar, 2011) 
–  BioTech NetWorkshop 2012 (Schloss Ringberg, January 2012) 



 

 

 

 

–  Munich Interact (Munich, March 2012) 
–  12th symposium on ePhyschem (April, 2012) 
–  Chemaxon European Group Meeting 2012 (May, 2012) 
–  Biovaria 2012 (May, 2012) 
–  ASTP annual conference (May, 2012) 
–  3rd Strasbourg summer school on chemoinformatics (June 2012) 
–  244th American Chemical Society meeting (Philadelphia, US, August, 

2012) 
–  Second Cadaster workshop (Munich , October 2012) 
–  International conference for the information Technology (Berlin 

October 2012) 
–  German Conference on Chemoinformatics (Goslar, November 2012) 

3.1.2  Entrepreneurship 

–  Innovation Days 2012 (Munich, November 2012)  
–  SACHS Biotechnology investment Forum (Zurich, October 2012)  

 

3.1.3  DMPK/ADME 

–  ADMET Europe (Munich, 2010) 
–  International pharmaceutical federation congress (Lisbon, 2010) 
–  ADMET Europe (Munich, 2011) 
–  International Pharmaceutical Federation congress (Amsterdam, 3-8 

October 2012) 
–  ADME and predictive Toxicology Europe (Munich, March 2012) 

3.1.4   

3.1.5  Trainings 

– Spring school in Bioinformatics (Hohenkammer, 2010) 
– European Patent Academy Workshop (Munich, 2010) 
– SimCYP PBPK modeling (Konstanz, 2011)  
– Research management training (ReMaT) 
– German language courses (2010, 2011) 

3.1.6 Internship 

– In the group of Prof. Hilde Spahn-Langguth (Mainz, Germany, July 
2012) 

– In the Institute of Environmental sciences (CML), university of Leiden 
under the supervision of Prof. dr. ir. W.J.G.M. (Willie) Peijnenburg 
(Leiden, Netherlands, November 2012) 

– Pfizer Inc. Global research site (Groton, CT, USA, March-April 2013) 
 

 

3.2 Publications 



 

 

 

 

3.2.1 Peer reviewed articles 

– Sushko, I. et al, Online chemical modeling environment (OCHEM): 
web platform for data storage, model development and publishing of 
chemical information. J Comput Aided Mol Des 2011, 25 (6), 533-54. 

– Stefan Brandmaier , Ahmed Abdelaziz, Igor V. Tetko, Balance in the 
chemical space: Cleaning datasets from structurally similar compounds 
(in review) 

– Stefan Brandmaier et al, The QSPR-Thesaurus: The online platform of 
the CADASTER project (in review) 

3.2.2 Posters 

– Abdelaziz A.; Alexander Safanayev; Tetko, I., "Building QSAR for 
HTS in vitro assays – A study for the prediction of Aryl hydrocarbon 
receptor activators” German Conference on Chemoinformatics (Goslar, 
November 2012)  

– Abdelaziz A.; Tetko, I., " Combining HTS in vitro assays with in silico 
descriptors for Liver toxicity modeling" 244th American Chemical 
Society meeting (Philadelphia, US, August, 2012) 

– Abdelaziz A.; Alexander Safanayev; Tetko, I., "QSAR modeling for 
the evaluation of Aryl Hydrocarbon receptor activators" 12th 
symposium on ePhyschem, Budapest, Hungary, March 2012 

– Abdelaziz A.; Tetko, I., "Using Toxcast™ HTS assays as biologically 
derived descriptors in QSAR" 3rd Strasbourg summer school on 
chemoinformatics, Strasbourg, France, June 2012 

– Abdelaziz A.; Alexander Safanayev; Tetko, I., “QSAR modeling for 
the evaluation of Aryl Hydrocarbon receptor activators” ADME and 
predictive Toxicology Europe & Munich Interact, Munich, Germany, 
March 2012 

– Ahmed Abdelaziz, Iurii Sushko, Wolfram Teetz, Robert Körner, Sergii 
Novotarskyi, Igor V. Tetko “QSAR modeling for In vitro assays: 
linking ToxCast™ database to the integrated modeling framework, 
OCHEM” German Conference on Chemoinformatics, Goslar, 
Germany, 6-8 November 2011 

– Abdelaziz A.; Körner R.; Novotarskyi S.; Teetz W.; Sushko I.; Tetko, 
I., “QSAR modeling for In vitro assays: linking ToxCast™ database to 
the integrated modeling framework-OCHEM” German Conference on 
Bioinformatics, Weihenstephan, Germany, 7-9 September 2011 

– "Active and Reactive Metabolites Formed During Hepatic First-Pass: 
Simulations Featuring Their Contribution to the Overall Effect in 
Altered Liver Clearance and Drug-Drug Interactions” OpenTox 2011 
InterAction Meeting Program, Munich, Germany, 9-12 August 2011 

– Abdelaziz A.; Körner R.; Novotarskyi S.; Teetz W; Pandey A.; Sushko 
I.; Rupp M.; Tetko, I:OCHEM: “public QSAR framework with 
integrated measurements database” Chemaxon eUGM 2011, Budapest, 
Hungary, 15-20 May 2011 



 

 

 

 

– Brandmaier, S.; Abdelaziz, A.; Sahlin, U.; Oberg, T.; Tetko, I. Stepwise 
D-Optimal design based on latent variables, interact 2011 Munich, 
Munich, Germany, April 7, 2011 

– Abdelaziz A.; Tetko, I.; Spahn-Langguth H., "Prediction of kinetic 
characteristics of drug metabolites in-silico: The distribution 
characteristics of beta-adrenoceptor antagonists" ADMET Europe 
2011, Munich, Germany, 28-29 March 2011 

– Abdelaziz A.; Körner R.; Novotarskyi S.; Teetz W; Pandey A.; Sushko 
I.; Rupp M.; Tetko, I., "OCHEM: public QSAR framework for 
modeling PK/PD parameters" ADMET Europe 2011, Munich, 
Germany, 28-29 March 2011 

3.2.3 Talks 

– Abdelaziz A., "Kinetics of active metabolites: Compartmental 
approach and in-silico predictions accounting for first-pass metabolism 
Karl-Franzens-University Graz, Austria, June 17, 2010 

– Abdelaziz A.; Alexander Safanayev; Tetko, I., "QSAR modeling for 
the evaluation of Aryl Hydrocarbon receptor activators"  244th 
American Chemical Society meeting (Philadelphia, US, August, 2012) 

– Abdelaziz A.; Tetko, I., " Combining HTS in vitro assays with in silico 
descriptors for Liver toxicity modeling" 244th American Chemical 
Society meeting (Philadelphia, US, August, 2012) 

 



 

 

 

 

3.2.4 Software Tools and Trainings 

In the field of Chemoinformatics, it is essential to receive training on as many 

informatics/computational tools. During the course of the project, I was keen to 

receive training on many valuable tools. Below is a summary of these tools 

Software Developer Training 

OCHEM HelmholtzZe
ntrum 
Muenchen & 
eADMET 
GmbH 

* Internal tool used during the whole project 
* Implemented the Chemaxon descriptor 
package 

SimCYP 

simulator 
SimCYP 
Limited 

* One week intensive training course on 

Model-based drug development: 

Incorporating population variability into 

mechanistic prediction of PK and modelling 

of PK-PD 

* One year academic license 

Course details: 

http://www.simcyp.com/ProductServices/Wor

kshops/20110411_Konstanz.htm?p=1 

 
Instant JChem, 

Marvin Sketch, 

Marvin beans 

Chemaxon 
SRL 

* 2011 and 2012 Chemaxon European user 
group meeting developer training and End-
user training 
* 3 year academic license 

Schrödinger Schrödinger 
http://www.sc
hrodinger.co
m/about/ 

* One-day user training at HelmholtzZentrum 
Muenchen 
* License through the Technical University of 
Munich (TUM) 
Schrödinger 
http://www.schrodinger.com/about/ 

OpenToxLab BioGraf3R * User manuals 
* 2 Year academic license 

Knime KNIME.com 
AG 

* User manuals 
* Free license 

GastroPlus, 

ADMET 

predictor 

SimulationsPl
us inc 

* User manuals and online webinars 
* Access during the internship at Prof. Hilde-
Spahn Langguth in Mainz 



 

 

 

 

Orange University of 
Ljubljana, 
Slovenia 

* User manual and tutorials 
* Free license 

WEKA The 
University of 
Waikato 

* User manual and tutorials 
* Free 

R – The statistics 

package 
Statistics 
Department 
of the 
University of 
Auckland 

* 2-day training at the technical university in 
Munich (“Using R for statistical data analysis 
II”) 
* training course during the Kalmar winter 
school ("Advances methods for regression 
and classification, and how to use them in R", 
Peter Filzmoser) 
* Free 

Matlab, 

SimBiology 
MathWorks * User manual and online webinars 

* Trial license  
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