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1.  Introduction 
 

The REACH legislation contains the demand, that each chemical compound 
produced in or imported into the EU in an amount of more than one ton has to be 
registered respective to a number of endpoints. Experimental determination of these 
properties for all compounds would require a high throughput testing. According to 
Rovida and Hartung the financial requirements for such testing are about 9.5 billion 
Euro. For potentially hazardous, dangerous or hardly degradable substances, the 
registration requires also information about their bioaccumulation and toxicity. Apart 
from cost and time efficiency - a sample for e.g. bioconcentration requires around two 
months of time and can bring up costs of more than 200 Euro,  - this leads also to 
ethical problems, as experimental determination of endpoints associated with toxicity 
and bioaccumulation are realized, utilizing animal tests. 

 
The necessity to keep the overhead of (animal) tests as small as possible is also 
important in many other research areas, e.g., in chemical or pharmaceutical industry. 
One commonly used strategy to address this problem is to use structure-activity 
modeling 3 and to predict the required properties rather than to perform experimental 
measurements.  This strategy is implemented by testing only a small subset of all 
compounds of interest and building a predictive model using the experimentally 
determined values. 
 
This basic task can be reduced to the problem of drawing a representative subsample 
of a bigger set, which is crucial for many tasks in chemo-informatics and QSAR 
modeling. This basic step was reported as important for experimental design and risk 
assessment within REACH, large scale in silico scanning for drug target evaluation 
and QSAR development. Therefore a variety of “implementations” to solve that 
problem was developed . All these approaches can be linked to three different basic 
ideas. Firstly the concept of trying to draw a selection that covers the whole range of 
the descriptor space, e.g. full or fractional design or space filling design, secondly the 
idea of selecting the most diverse subset of compounds, e.g. Kennard-Stone or D-
Optimal design and thirdly the aim to select the most representative subset, e.g. most 
descriptive compound selection (MDC). 
 
All these methods deliver advantages to certain problems but also disadvantages 
were reported for most of them. MDC has a bias towards central data points and 
disregards the periphery. Approaches aiming to select a maximum diversity subset 
have a tendency towards selecting outliers, especially in high dimensional spaces 
and for selection of only a low number of compounds. For space filling designs that 
try to cover the whole descriptor space, the number of compounds to be selected 
cannot be fixed, as there are cells in the chemical space, that are unoccupied, as due 
to the laws of chemistry no compound with the required qualities exist. Space filling 
designs work well for a selection of equally distributed compounds, but reveal 
problems for inhomogeneous distributions. Apart from that, the number of subspaces, 
for which a representative has to be selected, is exponentially increasing with the 
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number of dimensions in the search space. It enables only the use of a low 
dimensionality search space.  

 
Furthermore, all aforementioned approaches provide selection of compounds using 
descriptors only. Usually a principal component analysis (PCA) is applied to these 
descriptors to extract the so-called principal properties, which are used to select 
compounds. Although statistical literature also provides a large variety of sequential 
approaches, their application in QSAR is very limited. Sequential approaches are 
arranged in a stepwise procedure and adapt to the gathered information about the 
response. In theory, the sequential testing strategy could provide a better selection of 
compounds by taking into consideration the correlation of molecular descriptors to the 
target property. 
 
Apart from that, in the recent past, approaches using density based or hierarchical 
clustering were suggested. Also partition-based approaches, utilizing the k-Means 
clustering were introduced, but these approaches use the derived clusters to apply 
other selection algorithms to them. Although pharmaceutical publications mention the 
possibility, to use the clusters derived by k-Means, to select exactly one 
representative from each cluster, we are not aware of a study evaluating this 
technique in QSAR experimental design and comparing its performance to other 
experimental design techniques. The idea to assign the compounds to different 
clusters and choose a representative form each cluster seems to be appropriate for 
chemical compound selection, as the implied separation of the chemical space into 
clusters is adaptive to the real distribution of compounds and not to a hypothetical 
distribution.  

 
 

2.  Aims within the fellowship 
 

The aims within my short term fellowship contained two parts: 
 

 To investigate an adaptive, stepwise experimental design strategy that is 
based on the D-Optimal approach.  

We developed a method that combines D-Optimal design with partial least 
squares techniques to iteratively refine the descriptor space for the compound 
selection. This refinement is realized by the usage of PLS latent variables, 
instead of the principal components. In contrast to the static principal 
components, the PLS latent variables, which are correlated to the target 
property, can be recalculated after each measurement cycle. As the number of 
measurements increases from cycle to cycle, each new model is an 
improvement of the previous one. Based on these iteratively refined latent 
variables, an initially selected set of compounds is extended in a stepwise 
procedure. We evaluated the performance of the new approach on four 
datasets and compared it to the original D-optimal design. 
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 To investigate  the usage of the k-Medoid clustering algorithm to do a 
representative compound selection in terms of experimental design.  

We compared this approach to several other approaches that aim to give a 
representative selection, like space filling design, the D-Optimal criterion, the 
Kennard-Stone algorithm and the most descriptive compound approach, to 
evaluate its usefulness for experimental design. We applied these approaches 
to four datasets with different specifications, all of them with relevance for 
REACH and risk assessment, and compared the performance of models 
resulting of the selected compounds.  

 
 

3.  Preliminary requirements 
 

3.1. Dataset collections 
 
To validate the performance of the stepwise method, four datasets with different 
endpoints were collected from literature. All of the selected endpoints have relevance 
for REACH and risk assessment. To cover a broad spectrum of possible applications 
and to better examine the performance of the new method, the sets were collected to 
vary in several criteria, i.e. size, modeling and measurement complexities. 
The selected endpoints included two toxicity measurements, namely the log scaled 
lethal concentration for fathead minnow (logLC50), inhibition growth concentration for 
T. pyriformis (-logIGC50), an adsorbtion coefficient (logKOC) and the boiling point. The 
number of compounds in these datasets ranged from 96 (-logIGC50) to 1198 (boiling 
point). The logLC50 dataset contained 535 compounds and the logKOC dataset had 
648 compounds. 
 
For all four sets we excluded inorganic compounds, radicals, charged molecules and 
salts. Moreover, we removed compounds for which no exact values, but an interval or 
only a minimum or maximum values were given. For the compounds in the logLC50 
and in the logKOC datasets, no structural filters were applied. Therefore the datasets 
contained a wide variation of different compound classes, had a wide structural 
diversity and the resulting models can be identified as ‘global’ ones. For boiling point, a 
diversified filter was applied to the structures, limiting the compounds in the final 
dataset to halogenated ones, containing bromine, fluorine and / or chlorine. The initial -
logIGC50 dataset contained more than one thousand compounds. However, to 
evaluate the performance of the developed approach on a relatively small dataset, a 
subset containing 96 compounds was randomly selected. 
  
The descriptors for model development were ALogPS lipophilicity and solubility and E-
state indices. The E-state indices were shown to provide a high accuracy of predictions 
for similar end-points in our previous publications. ALogPS descriptors were added to 
account for physico-chemical parameters, e.g. solubility and distribution, which could 
be important for the considered end-points. All descriptors were normalized to [0,1] 
range. The descriptors were calculated using the Online Chemical (OCHEM) 
database,30 which is publicly accessible at http://ochem.eu. 
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These four sets were collections of literature values and not necessarily intended for 
model building. Furthermore, they were without an explicit indication regarding the 
dependency between the general descriptors we decided to use and the endpoint. As 
we wanted to extend our studies on the k-Medoid approach also to evaluate the 
performance of the selection approaches on a collection of compounds, for which a 
clear linear dependency between the endpoint and a selection of descriptors was 
reported, we additionally selected a dataset that was the fundament for a published 
model. The dataset we decided for was taken from the OMRF database of the 
European commission and used for the reviewed bioconcentration factor model in fish, 
published by Gramatica et al.  
 
The model to predict the logBCF value was trained on 179 compounds and validated 
on 59 compounds. The model was using a set of five descriptors derived by the 
DRAGON software 25, reporting a Q2 of 86.4, an R2 of 90.5 and an RMSE of 0.57 on 
the external dataset. For our study, we merged the trainings and validation set and 
used the five descriptors, reported in the publication, to represent the compounds. 
 
 

3.2. Implementation of selection approaches 
 

3.2.1. Partition based selection 
 
This approach is based on the ideas of full factorial design, space-filling design and 
partition-based approaches. It works by partitioning the chemical space of relevance 
into subspaces and selecting the most representative compound from each subspace. 
The implementation of this idea is realized by dividing the axes of the chemical space 
into bins. Thereby the number of bins within each axis is equal. As the number of 
subspaces is exponentially increasing with each additional dimension in the chemical 
space, we fixed the approach to work on three dimensions. And as compounds in the 
chemical space are usually not equally distributed, the number of bins, each axis is 
separated into, is not a fixed one, but automatically detected, regarding the number of 
compounds to be selected. Therefore the number of bins is increased as long, as the 
number of subspaces, occupied by at least one compound, is not higher than the 
number of compounds to be selected. Finally from each occupied subspace the 
compound with the lowest Euclidean distance to the center of the subspace is selected. 
As this approach is focusing on the separation of the chemical space and not on the 
distribution of the compounds, the number of selected compounds can be smaller than 
desired. 
 
 

3.2.2. Most descriptive compounds 
 
The most descriptive compound selection (MDC) aims to select compounds that are 
located in the dense regions of the chemical space and therefore highly representative 
for the other compounds of interest. The algorithm is based on the pairwise distances 
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of the compounds and the deduced information content for all other compounds. The 
compounds are selected sequentially and after each newly selected compound, the 
contribution of that compound is eliminated. The implementation also provides a stop 
criterion, which limits the number of compounds to be selected. As this study 
concentrates on a comparison for a fixed number of compounds selected, the 
compounds are used, regarding their selection order. 
 
 

3.2.3. Kennard-Stone algorithm 
 
Similar to the MDC algorithm, also the Kennard-Stone algorithm selects compounds in 
a fixed order. Derived from an initial selection, the compounds are selected 
sequentially. To find the next compound to be selected, the pairwise Euclidean 
distance of each candidate compound to its nearest already selected neighbor is 
calculated. The compound with the highest distance to its nearest neighbor and which 
is thereby furthest from the existent selection, is selected. In this study, the initial 
selection was a randomly chosen data point. 
 
 

3.2.4. D-Optimal criterion 
 
D-Optimal design selects the most distinct combination of compounds. Therefore each 
possible subset of a given size is evaluated according to the D-Optimal criterion. The 
model matrix of a subset is used to derive, the information matrix. The most distinct 
and thereby optimal of all possible subsets is the one with the maximum determinant of 
the information matrix. The implementation of the D-Optimal selection criterion was 
according to literature specifications and utilizing the Fedorov heuristic to optimize the 
speed of the selection. 
 
As the application of the D-Optimal criterion is known to work well for linear 
dependencies between the principal components and the target property, but revealing 
problems for dependencies of higher order, it was also applied to a set of meta-
descriptors, that contained the normalized principal components, their cross and 
square terms. This additional feature increases the search space by a quadratic factor. 
The compounds selected with this enhancement are not anymore exclusively located 
at the periphery of the dataset, but also in the central regions. 
 
 

3.2.5. K-Medoid approach 
 
The fundament for the selection approach, we investigated within the fellowship was an 
implementation of the k-Medoid clustering. The k-Medoid clustering, which is a type of 
k-Means clustering, partitions a set of data points into a given number of subsets, the 
clusters. Each data point is assigned to only one cluster and each cluster must contain 
at least one data point.  
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For the k-Medoid approach, a number of k randomly selected data points gets initially 
assigned as cluster centers. In the second step, each data point, that is not assigned to 
be a cluster center, gets assigned to the nearest cluster center (regarding the 
Euclidean distance). In the third step, the cluster centers are reassigned to that data 
point within a cluster, which has the lowest sum of pairwise distances to all other data 
points in the cluster. Now steps two and three are alternatingly executed, until 
convergence is reached, which means, that the clusters, and thereby also the cluster 
centers do not change anymore. For each assigned cluster a representative is 
returned, which is in our case the cluster center. As the cluster center is the point with 
the lowest sum of pairwise distances to all other points within a cluster, this point can 
be also seen as the most representative point within the cluster. 
 
 

3.3. Implementation of a stepwise selection procedure 
 

The utilization of the stepwise approach has two phases. Firstly the application of the 
extended D-Optimal design, that takes preselected compounds into consideration and, 
secondly, an implementation of Partial Least Squares regression (PLS) to calculate the 
so-called latent variables for all compounds. The calculation of these latent variables is 
based on a PLS model, which is built on the preselected compounds.  
 
Latent variables from PLS are comparable to the principal components of a PCA. But 
contrary to PCA components, which are selected to maximize the variance of the 

dataset (i.e., to cover as 
much as possible 
variability of data), the 
PLS latent variables are 
selected to maximize 
the covariance (i.e., 
provide maximum 
correlation) with the 
target variable. 
Therefore, in addition to 
PCA components, the 
latent variables contain 
information about the 
target variable. In our 
approach, instead of the 
uncorrelated PCA 
components, we use 
the PLS components as 
descriptors for the D-
Optimal design. By this 

modification, the 
representation of the 
compounds of interest 

Figure 1. Comparison of the traditional workflow (left) and the 

suggested stepwise selection (right) 
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is adjusted to the considered endpoint, and it is not anymore depending only on the 
uncorrelated structural information. 
 
In the first phase of the stepwise approach, a traditional D-Optimal design is used to 
select an initial seed, containing a fixed number of compounds. Therefore a D-Optimal 
selection is applied to a fixed number of principal components derived from a PCA on a 
set of descriptors for all compounds within the set of relevant compounds. During all 
further steps, the compounds selected in the previous steps are considered as being 
already tested and a PLS model is built on them. The developed PLS model is then 
used to calculate the latent variables for all compounds and the D-Optimal selection is 
performed utilizing these latent variables, instead of the principal components. 
Furthermore, all preliminary tested compounds are fixed members of the resulting set 
of the D-Optimal design. 
  
The most important differences between the stepwise approach based on latent 
variables and the traditional D-Optimal selection is shown in Fig. 1. Whereas the 
traditional method (left side of the figure, colored pink) selects all compounds at the 
same time, the stepwise approach (right side of the figure, depicted blue) constantly 
increases the number of compounds in cyclic way. Furthermore the chemical space to 
represent the compounds is refined with each cycle. 
 
 

3.4. Validation 
 
To obtain a meaningful statistical fundament to compare the performance of different 
approaches, from each dataset 100 subsets (design sets) were generated. The 
compounds in the subsets were chosen randomly and the size of each subset was 
75% of the whole dataset. The detained 25% of the compounds were used as 
respective external validation sets. Each of the design sets was used for the 
experimental design. 
 
In order to receive comparable information about the quality of the compound selection, 
PLS was utilized to train a regression model on the selected compounds. The number 
of latent variables to be used for the final model was determined in a five fold cross 
validation on all selected compounds using the coefficient of determination as criterion 
for the optimal number. The reason, to choose PLS for evaluating the final selection is 
the robustness of the method. As it uses a projection of the descriptors, it reliably finds 
linear correlations of the target property in the descriptor space. Furthermore, by taking 
the target property into account, PLS removes noise in the descriptor space. 
 
The performance of the developed model was then calculated for the exteral validation 
Split and RMSE was calculated as a measurement of error. The mean value of RMSE 
on the 100 models calculated for each dataset was then used to compare the quality of 
experimental designs for PLS-Optimal and the traditional method. 
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4. Results 
 

4.1. PLS-Optimal 
 
As it is a requirement for the D-Optimal criterion to work, that the model matrix has 
more observations than variables, the number of components to be used is strictly 
limited. Therefore on the three large datasets another examination within the range 

from 5 to 35 selected compounds was 
initiated. We were using the meta 
descriptors containing the normalized 
components, their square and cross 
products. The number of PLS latent 
variables used in the stepwise 
approach was automatically 
determined, whereas the number of 
principal components used for the 
traditional approach was fixed to the 
maximum that could be used, 
respective the number of compounds 
to select. This means 1 component for 
less than 6 compounds selected, 2 for 
less than 10, 3 for less than 15, 4 for 
less than 21, 5 for less than 28 and 6 
components for less than 30 
compounds selected. 
  
The results in Fig. 2a –c show, that 
the stepwise approach reaches a 
clearly better performance for all three 
endpoints. This improvement is 
significant (p < 0.001) for the whole 
range from 10 to 35 selected 
compounds. In case of the logKOC 
dataset (Fig. 2b) and for the range 
from 13 to 24 selected compounds, 
the stepwise approach performed 
better for more than 90 out of 100 
splits. 

 
Regarding the boiling point (Fig. 2c), 
the average RMSE performance for 

24 compounds selected with the traditional approach could be reached with only 13 
compounds selected in a stepwise procedure. Furthermore, in the range from 13 to 32 
compounds selected, the improvement of the average RMSE for the same number of 
compounds selected is better by at least 9 degrees. For logLC50 (Fig. 2a), the average 
performance with 24 compounds selected in a stepwise procedure could not be 

Figure 2. Results of the error validation for cross and 

square terms on a low number of compounds 
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reached with less than 32 compounds selected based on principal components and in 
case of the logKOC dataset, the stepwise approach delivers an average performance 
for 13 compounds selected, that cannot be reached with less than 24 compounds 
utilizing the traditional method. The RMSE for that dataset was in average decreased 
by 21% in the range from 10 to 35 compounds selected. 
 
Finally, comparing the results of the stepwise approach applied to a sequence of 10, 20 
and 30 compounds selected with those of the stepwise approach applied to the 
increased step size, the latter delivers an increased model quality for the same number 
of compounds selected. The average RMSE for 28 compounds selected using the 
smaller step size is 0.19 log units better for the logKOC dataset and 0.03 log units for 
logLC50 dataset. 
 
The models built on PLS-Optimal design deliver a more stable performance regarding 
the error development for all four examined endpoints. Whereas for the classic 
approach the performance shows some variability and deviations for an increasing 
number of selected compounds, the development of the performance of the PLS-
Optimal design is much more smooth and approximates a hyperbola function. This is 
observable even for a search space of only three components variables. 
 
Whereas a principal component can be completely uncorrelated to the target property 
and thereby lead to an accumulation of noise, the PLS components contain only 
correlated information. Furthermore, they are ranked by their importance for the 
specific endpoint, whereas the principal components are just ranked by their variance. 
This leads do an accumulation of irrelevant information in the principal components. 
Therefore, the required number of principal components to catch up the same amount 
information for an endpoint is usually higher than the required number of PLS latent 
variables. This is important, both, in terms of stability and in terms of efficiency, to keep 
the dimensionality of the search space as low as possible. 
 
The effect, that PLS components are less prone to noise, can be observed for the 
selection of only a small number of compounds, in particular when using cross terms. 
In the range from 5 to 35 selected compounds, PLS-Optimal delivers significantly 
improved performance compared to the use of traditional D-optimal design.  
 
 

4.2. K-Medoid approach 
 
Fig.3 a-f) shows the results of the validation on the selection approaches for the 
logLC50 dataset (a-b), the logKOC dataset (c-d) and the boiling point dataset (e-f). The 
number of principal components used in each column is 3 (left column) and 7 (right 
column). Exceptions hereby are the random selection, as it is independent of the 
number of latent variables and the space filling design, which was performed on a fixed 
number of 3 latent variables. Furthermore, the performance derived by a selection on 
the D-Optimal criterion using cross and square terms was only examined for three 
latent variables. The x-axis in each figure indicates the number of compounds selected 
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and the y-axis shows the average RMSE performance. The initial cluster centers for 
the k-Means approach in this section were assigned randomly. 
 

 
Figure 3. Performance of the approaches on the logLC50 dataset, the logKOC dataset and the boiling 

point dataset, with 3 and 7 latent variables. k‐Medoid is displayed in red, the space filling design in 

green, Kennard‐Stone purple, the D‐Optimal criterion is blue or bright blue for linear or a quadratic 

search space and the MDC approach is displayed yellow. The random selection is displayed by the 

black curve. 
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The first observation is, that with an increasing number of selected compounds also the 
model performance improves. This observation applies for all approaches and it is 
expected, since a larger number of molecules allows developing better models. A 
second observation is that for all datasets, the random selection performs well. Also 
this is expected, as there are publications that report better performance for random 
approaches, than for elaborated approaches. 
  
Figure 1. Performance of the approaches on the logLC50 dataset, the logKOC dataset 
and the boiling point dataset, with 3 and 7 latent variables. k-Medoid is displayed in 
red, the space filling design in green, Kennard-Stone purple, the D-Optimal criterion is 
blue or bright blue for linear or a quadratic search space and the MDC approach is 
displayed yellow. The random selection is displayed by the black curve. The x-axis 
represents the number of selected compounds and the y-axis represents the average 
RMSE of 100 trials. 
 
Furthermore and of more interest, for all datasets, for the whole range of compounds 
selected and for each number of latent variables to define the search space, the 
performance of the k-Medoid approach (displayed by the bold red curve) is within the 
best. Compared to all other approaches, it has the best initial performance and a fast 
decrease of the error. 
 
Especially for a small number of compounds selected, in the range from 10 to 30 
compounds, the models derived from the k-Medoid selection perform better than for 
any other approach, except the MDC selection on the logLC50 dataset. This 
improvement is statistical significant. Regarding a binomial test from the direct method, 
using the Binomial distribution and 100 trials, the p-Value is lower than 0.01. The best 
initial performance for 10 compounds selected is in all nine examples derived from the 
selection of the k-Medoid approach. In the range from 80–160 compounds selected, 
the performances of the models derived by the k-Medoid approach, the random 
selection, the MDC approach and the space filling design converge and come up with a 
comparable performance. 
 
Contrary to other approaches, the development of the error for the k-Medoid approach 
describes a permanent curve with a constantly increasing incline, without the 
inconstancies, that can be observed for the MDC approach, the space filling design 
and also the D-Optimal design. The development of the performance of the k-Medoid 
approach is more smooth and approximates a hyperbola function, regardless of the 
number of principal components used or the dataset. 
 
A reason for the good performance of the k-Medoid approach is that it approach unites 
the advantages of the three basic ideas, whereas it minimizes their disadvantages. 

 Like a space filling design, it covers the whole chemical space, but respective 
to the real distribution. 

 Like approaches based on the selection of the most distinct compounds, each 
point in periphery of the data cloud is represented in a cluster. 

 From each cluster the most representative compound is selected, as the 
criterion of the minimal distance is applied.  
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Furthermore worth mentioning, the k-Medoid approach is not subject to restrictions like 
other approaches. Whereas for the space filling design it is impossible, to fix the 
number of finally selected compounds, with k-Medoid approach the resulting number of 
compounds can always be precisely defined. k-Medoid has no stop criterion, like MDC 
and even a small number of compounds can be selected from a high dimensional 
search space, which is not possible with the D-Optimal criterion, as the number of 
compounds to be selected, must be higher than the number of principal components. 
 
 

5. Summary and outlook 
 
The results for the stepwise approach, presented in this report, were limited to the 
application of the D-Optimal criterion to PLS latent variables. The concept of taking 
the correlation or covariance to the target property into account could be realized with 
any other selection criterion. Furthermore, the usage of sequentially refined latent 
variables is a powerful tool, but an integrative process of descriptor selection, based 
on the preselected compounds, could also realize the stepwise optimization of the 
chemical space.  
 
The sequential approach, we suggest, could also be extended to a Bayesian one, just 
by performing the initial selection on the latent variables derived from a model, built 
on measurements, collected by a literature research. 

 
The manuscript about the study on the usage of PLS latent variables, instead of 
principal components for experimental design is finished and will be submitted to a 
peer reviewed journal within the next days. The manuscript about the usage of k-
Medoid clustering for experimental design in QSAR is reviewed by the authors and 
will be submitted to a peer reviewed journal, as son as his procedure is finished. A 
third study, focussing on the robustness of several standard approaches for 
experimental design and the comparison of these approaches to a newly developed 
approach, could not be finished within the three months period, but will be continued 
within the next months. 
 

 
 


